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Calorimetric study of heptyloxybenzylidene butylaniline in silica
aerogels

by HISASHI HAGA and CARL W. GARLAND*

Department of Chemistry and Center for Material Science and Engineering,
Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, U.S.A.

(Received 23 September 1996; accepted 14 October 1996 )

A high resolution a.c. and relaxation calorimetric study has been carried out on heptyloxy-
benzylidene butylaniline (7O.4 ) in two silica aerogels with mass densities r= 0´08 and
0 1́7 g cm Õ 3. Bulk 7O.4 exhibits strongly ® rst order N± I, N± SA and SC ± Cr G transitions as
well as a mean-® eld second order SA± SC transition. The 7O.4/aerogel samples exhibit three
® rst order transitions (N± I, N± SA , SA± crystal ) that are appreciably shifted and broadened
relative to bulk 7O.4. The SA± SC transition is not observed in either of the aerogel samples.

1. Introduction [2 ± 4]. The two aerogels used in this study were the
A wide variety of studies have been made on liquid highest porosity ( lowest density) gels with mass densities

crystals con® ned in porous media [1]. Heat capacity of 0 0́8 and 0 1́7 g cm Õ 3. They have a fractal network
measurements have been used to characterize the phase structure where the internetwork voids ( p̀ores’) have
transitions of several compoundsÐ octylcyanobiphenyl average pore chords L of 700 Ô 100 AÊ (r=0´08 ) and
(8CB), octylphenylthiolpentyloxybenzoate (8ÅS5), 430 Ô 65 AÊ (r=0´17 ); the volume fractions wp of pores
butyloxybenzylidene octylaniline (4O.8)Ð in silica aerog- are 0 9́45 and 0 9́0, respectively. Further details about
els [2 ± 4], additional calorimetric work has been done these aerogels are given in [2].
on liquid crystals in porous glasses [5]. Samples were prepared by ® rst vacuum drying at

The present work involves a thermal study of N -(4-n- 300ß C a thin aerogel slab prior to ® lling, which was also
heptyloxybenzylidene)-4 ¾ -n-butylaniline (7O.4) carried out in vacuum by heating 7O.4 into the isotropic

phase and allowing the slab to ® ll slowly by capillary
action. Three samples were prepared from the r=0´08

aerogel. In one case, the ® lled sample was unwiped so
that a small surface excess of bulk 7O.4 remained. In a
second case, the surface of the ® lled aerogel was gently

in two of the same aerogels that were used in [2 ± 4].
wiped dry with ® lter paper to remove excess bulk liquid

Bulk 7O.4 exhibits N± I, N± SA , SA± SC , and SC ± Cr G
crystal that might be present. In a third case, a consider-transitions [6], where Cr G is the tilted plastic crystal
able excess of 7O.4 was used so that there was appre-G phase and N, SA , SC are the familiar nematic, smectic A
ciable bulk 7O.4 left on the surface of the sample. Forand smectic C phases. The features that distinguish 7O.4
the sample prepared from the r=0´17 aerogel, thefrom previously studied aerogel systems is the fact that
amount of 7O.4 was smaller than that needed to com-the N± SA bulk transition is strongly ® rst order (due to
pletely ® ll this gel; it is estimated that this sample wasa small nematic range of ~2 K) and the bulk SA± SC
~80 per cent full.transition is very close to a classical Landau tricritical

Once ® lled, the samples were weighed and sealed in apoint with a large excess heat capacity peak [6]. The
silver cell having a cold-weld indium seal. The handlingprincipal goal of this investigation was to characterize
procedure was such that the 7O.4 does not transformthe e� ect of quenched disorder associated with high
into the rigid crystal K phase, thus avoiding damage toporosity aerogels on these two transitions.
the fragile aerogel network [3].

The calorimeters used in this investigation have been2. Procedures
described elsewhere [7]. Two distinct modes of opera-The aerogels were from the same batches as those
tion were used. One was a conventional a.c. calorimetryused previously for other liquid crystal/aerogel studies
mode, and the other was a ramped relaxation (or non-
adiabatic scanning) mode that uses d.c. heating and is*Author for correspondence.
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276 H. Haga and C. W. Garland

capable of determining enthalpy changes including latent
heats at ® rst order transitions. Even the a.c. technique
can provide a qualitative indication of two-phase coexist-
ence. The a.c. power input causes a sample temperature
response DTa.c. e

i(
v
t+w

). The amplitude DTa.c. determines
the heat capacity Cp , and anomalous peaks in the phase
shift w indicate two-phase coexistence. All Cp (a.c.) data
were acquired at v =0´196 Hz s Õ 1 (f=31 2́5 mHz).

3. Results and discussion

Heat capacity data for 7O.4 in an aerogel with density
r=0´08 g cm Õ 3 is given in ® gure 1. This sample is the
unwiped r=0´08 aerogel, which exhibits clear indica-
tions of a surface excess of bulk 7O.4. Sharp spike-like
features associated with N± I, N± SA , and SC ± Cr G ® rst
order bulk transitions are denoted by arrows. Shifted to

Figure 2. Detailed view of Cp (a.c.) data for 7O.4 in two r=lower temperatures are three broad peaks associated
0´08 aerogels. The unwiped sample is the same as thatwith transitions involving 7O.4 inside the aerogel pores.
shown in ® gure 1, and the wiped sample was dried withThe assignment of the three spikes as due to excess bulk
® lter paper to remove excess 7O.4 bulk on the surface.

7O.4 is con® rmed by data on the r=0´08 aerogel
containing substantial excess 7O.4 and the wiped r =
0´08 aerogel sample. In the former case, the spikes grow the small SA± SC second order Cp feature. It should be

noted that a very small surface excess still remained onappreciably in size while the rounded intragel peaks do
not change. In the latter case, the spikes almost com- the wiped sample since tiny N± I and N± SA surface spikes

were observed. The temperatures of the N± SA andpletely vanish but the intragel peaks are only slightly
modi® ed. SC ± Cr G surface spikes agreed well with bulk 7O.4

transition temperatures. The N± I surface spike wasA comparison of Cp data in the 330± 338 K range for
wiped and unwiped r=0´08 aerogel samples is given in located 0 6́ K below the bulk transition temperature and

the SA± SC peak was 1 0́ K below the bulk values, indicat-® gure 2. This shows that wiping the surface almost
completely eliminated the sharp SC ± Cr G spike and also ing that these transitions are sensitive to perturbations

by the surface, perhaps due to anchoring. Even larger
di� erences between the temperature of surface spikes
and bulk transitions were observed for 4O.8/aerogel
samples [4].

The conclusion drawn from ® gure 2 is that 7O.4 inside
the aerogel network does not undergo a SA± SC transition.
This is con® rmed by ® gure 3, which shows the heat
capacity of 7O.4 in a r=0´17 aerogel that is
~80 per cent ® lled. In this case, there are no sharp
spikes related to ® rst-order bulk-like surface transitions
and no indications of a SA± SC feature.

The three broad 7O.4/aerogel peaks represent smeared
® rst order transitions with wide coexistence regions. This
is indicated for both the r =0´08 and 0 1́7 samples by
large characteristic peaks in the phase shifts w at all
three transitions. The widths of the coexistence ranges,
as determined by these w anomalies, are given in the
table along with the temperatures of the center of the

Figure 1. Cp (a.c.) for 7O.4 in a r =0´08 silica aerogel. This broad 7O.4/aerogel peaks. Additional con® rmation of
sample was unwiped and contained a small excess of bulk the smeared ® rst order character of these transitions was
7O.4 on the surface. The sharp spikes marked by arrows provided by a non-adiabatic scanning (relaxation) run
correspond to ® rst order transitions in this surface excess.

on the unwiped r=0´08 sample. For the 7O.4/aerogelThe dashed lines and horizontal arrows at the bottom of
peaks, the Cp (relax) curves were higher near the maximathe ® gure indicate the widths of two-phase coexistence

regions associated with the broad 7O.4/aerogel peaks. than the respective Cp (a.c.) curves, which is consistent
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277Calorimetric study of 7O.4 in silica aerogels

[4], the N± I transition is shifted more than the N± SA

transition. This is opposite to the trend observed for
8CB/aerogel samples [2]. It should be noted that the
temperature shifts di� er substantially for the two aerog-
els but the widths of the two-phase coexistence regions
are essentially independent of aerogel density. In the
case of the smectic-to-plastic crystal freezing transition,
this is a SC ± Cr G transition in bulk 7O.4 but the
7O.4/aerogel samples do not exhibit a SA± SC transition.
Thus the aerogel freezing transition is a SA± Cr X trans-
ition, where Cr X is probably plastic crystal Cr B (but
might be the tilted analogue Cr G). The table combines
these di� erent types of freezing transitions under the
notation TSCr , but the shifts DT may not be too relevant
in this case since the nature of the smectic and plastic
crystal phases di� er.

In conclusion, the sharp ® rst order transitions in bulk
Figure 3. Cp (a.c.) for 7O.4 in a r =0.17 silica aerogel that is 7O.4 remain ® rst order for 7O.4/aerogel samples, but

~80 per cent ® lled. In this case, the absence of sharp
the Cp peaks are shifted signi® cantly and the two-phasespikes like those in ® gure 1 indicates that no surface excess
coexistence regions are greatly broadened. Althoughof bulk 7O.4 is present. The dashed lines and horizontal

arrows at the bottom indicate the widths of two-phase bulk 7O.4 exhibits a large second order Cp (SA± SC ) peak,
coexistence regions. the 7O.4/aerogel samples do not undergo a SA± SC

transition.
Table Transition temperatures and widths of two-phase

coexistence regions for bulk 7O.4 and 7O.4 in two aerogels. The authors wish to thank Z. Kutnjak and
For the r =0´08 aerogel, the data correspond to the G. S. Iannacchione for helpful discussions. This work
unwiped sample shown in ® gure 1. Also given are the was supported in part by the National Scienceshifts DT =T (aerogel ) Õ T (bulk). All quantities are in

Foundation under grant DMR 93-11853. One of thedegrees kelvin.
authors (H.H.) wishes to acknowledge partial support

Material Bulk r =0´08 r =0´17 from the Japanese Ministry of Education.
aerogel aerogel
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